Reference Library

I. Acidification Overviews and Reviews

Baumann, H. 2019. Experimental Assessments of Marine Species Sensitivities to Ocean Acidification and Co-Stressors: How Far Have We Come? Canadian Journal of Zoology 97(5):399-408. https://doi.org/10.1139/cjz-2018-0198


Doney, S.C., Balch, W.M., Fabry, V.J. and Feely, R.A. 2009. Ocean acidification: A Critical emerging problem for the ocean sciences. Oceanography 22: 16-25. http://dx.doi.org/10.5670/oceanog.2009.93


Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1: 169-192. doi:10.1146/annurev.marine.010908.163834.   


Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. Journal of Marine Science 65: 414-432. https://doi.org/10.1093/icesjms/fsn048.   


Feely, R., Doney, S., Cooley, S. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4): 36-47. doi:10.5670/oceanog.2009.95.   


Honisch, B. Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., and others. 2012. The geological record of ocean acidification. Science 335(6074): 1058-1063. doi: 10.1126/science.1208277.    


Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., Gattuso, J.-P. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884-1896. doi: 10.1111/gcb.12179.   


Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686. doi:10.1038/nature04095.   


Pörtner, H.O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology Progress Series 373: 203–217. doi: 10.3354/meps07768.   


Salisbury, J., Green, M., Hunt, C., Campbell, J. 2008. Coastal acidification by rivers: A Threat to shellfish? EOS Transactions, American Geophysical Union 89(50): 513-513. doi:10.1029/2008EO50000. 


Wallace, RB, Baumann, H, Grear, JS, Aller, RC, and Gobler, C J. 2014. Coastal ocean acidification: the other eutrophication problem. Estuarine, Coastal and Shelf Science. 148: 1–13. https://doi.org/10.1016/j.ecss.2014.05.027

II. Observation and Monitoring

Baker, J.P., Van Sickle, J., Gagen, C.J., Dewalle, D.R., Sharpe, W.E., and others. 2012. Episodic acidification of small streams in the northeastern United States: Effects on fish populations. Ecological Applications 6(2): 422-437. doi: 10.2307/2269380.  


Brewin, RJW, Hyder, K., Andersson, AJ, Billson, O, Bresnahan, PJ, Brewin, TG, Cyronak, T, Dall’Olmo, G, de Mora, L, Graham, G, Jackson, T, Raitsos, DE. (2017). Expanding Aquatic Observations Through Recreation.Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2017.00351


Bushinsky, S.M., Takeshita, Y. & Williams, N.L. 2019. Changes in Ocean Carbonate Chemistry: Our Autonomous Future. Current Climate Change Reports. 5(3): 207-220. https://doi.org/10.1007/s40641-019-00129-8


Cai, W.J., Huang W.J., Luther III, G.W., Pierrot, D., Li, M., Testa, J., and others. 2017. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay, Nature Communications 8(369). doi: 10.1038/s41467-017-00417-7 


Cirmo, C.P., Driscoll, C.T. 1996. The Impacts of a watershed CaCO3 treatment on stream and wetland biogeochemistry in the Adirondack Mountains. Biogeochemistry 32(3): 265-297. doi: 10.1007/BF02187142.   


Correll, D.L., Miklas, J.J., Hines, H., Schafer, J.J. 1987. Chemical and biological trends associated with acidic atmospheric deposition in the Rhode River watershed and estuary. Water, Air, & Soil Pollution 35(1-2): 63-86. doi: 10.1007/BF00183844.  


Rheuban, JE, Doney, SC, McCorkle, DC, Jakuba, RW. 2019. Quantifying the Effects of Nutrient Enrichment and Freshwater Mixing on Coastal Ocean Acidification. JGR Oceans. https://doi.org/10.1029/2019JC015556


Saba GK, Wright-Fairbanks, E, Chen, B, Cai, WJ, Barnard, AH, Jones, CP, Branham, CW, Wang, K, Miles, T. 2019. The Development and Validation of a Profiling Glider Deep ISFET-Based pH Sensor for High Resolution Observations of Coastal and Ocean Acidification. Frontiers in Marine Science. 6:664. https://doi.org/10.3389/fmars.2019.00664


Science assessment of Chesapeake Bay acidification: Toward a research and monitoring strategy. (2014). ACT Technology Workshop Reports, Act Ws14-01, i-22. Retrieved from: http://dnr.maryland.gov/waters/bay/Documents/MDOATF/OA_ACT-CB_AcidificationWorkshopReport_March2014.pdf.  


Shen, C, Testa, JM, Li, M, Cai, WJ, Waldbusser, G, Ni, W, Kemp, WM, Cornwell, J, Chen, B, Brodeur, J, Su, J. (2019). Controls on Carbonate System Dynamics in a Coastal Plain Estuary: A Modeling Study. JGR Biosciences. 124(1): 61-78. https://doi.org/10.1029/2018JG004802


Wallace, R.B., Baumann, H., Grear, J.S., Aller, R.C., Gobler, C.J. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science 148: 1-13. https://doi.org/10.1093/icesjms/fsn048.  


Xu, Y.Y., Cai, W.J, Gao, Y., Wanninkhof, R., Salisbury, J., Chen, B., Reimer, J.J., Gonski, S. and Hussain, N. 2017. Short-term variability of aragonite saturation state in the central Mid-Atlantic Bight, Journal of Geophysical Research: Oceans 122. doi: 10.1002/2017JC012901.

III. Ocean Acidification Impacts on Organisms

Alava J.J., Cheung W.W.L., Ross P.S., Sumaila U.R. 2017. Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Glob Change Biol. 00:1–18. https://doi.org/10.1111/gcb.13667  


Arnold, T., Mealey, C., Leahey, H., Miller, A.W., Hall-Spencer, J.M., Milazzo, M., Maers, K. 2012. Ocean acidification and the loss of phenolic substances in marine plants. PLoS ONE 7(4). doi: 10.1371/journal.pone.0035107.     


Baumann, H., Talmage, S.C., Gobler, C.J. 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change 2(1): 38-41. doi:10.1038/nclimate1291.   


Bednaršek, N, Feely, RA, Howes, EL, Hunt, BP, Kessouri, F, León, P, Lischka, S, Maas, AE, McLaughlin, K, Nezlin, NP, Sutula, M, Weisberg, SB. 2019. Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming. Frontiers in Marine Science. 6:227. https://doi.org/10.3389/fmars.2019.00227


Chambers, R.C., Candelmo, A.C., Habeck, E.A., Poach, M.E., Wieczorek, D., Cooper, K.R., Greenfield, C.E., Phelan, B.A. 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences 11(6): 1613-1626. doi: 10.5194/bg-11-1613-2014.   


Clark HR, Gobler CJ (2016) Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar Ecol Prog Ser 558:1-14. https://doi.org/10.3354/meps11852


Dobretsov, S, Coutinho, R, Rittschof, D, Salta, M, Ragazzola F, Hellio, C. (2019) The Oceans are Changing: Impact of Ocean Warming and Acidification on Biofouling Communities. Biofouling. 35(5): 585-595. https://doi.org/10.1080/08927014.2019.1624727


Duckworth, A.R., Peterson, B.J. 2013. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Marine Biology 160(1): 27-35. doi: 10.1007/s00227-012-2053-z.   


Elettra L, Dahlke, FT, Storch, D, Pörtner, HO, Mark, FC. 2018. Impact of Ocean Acidification and Warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus. Conservation Physiology. 6(1). https://doi.org/10.1093/conphys/coy050


Esbaugh, A.J. 2018 Physiological Implications of Ocean Acidification for Marine Fish: Emerging Patterns and New Insights. Journal of Comparative Physiology B 188: 1. https://doi.org/10.1007/s00360-017-1105-6


Fay, G., Link, J.S., Hare, J.A. 2017. Assessing the effects of ocean acidification in the Northeast US using an end-to- end marine ecosystem model. Ecological Modelling 347: 1-10. doi: 10.1016/j.ecolmodel.2016.12.016.   


Giltz S.M. and Taylor C.M. 2017. Reduced Growth and Survival in the Larval Blue Crab Callinectes sapidus Under Predicted Ocean Acidification. J. Shellfish Res. 36(2):481-485. https://doi.org/10.2983/035.036.0219  


Gobler, C., Baumann, H. 2016. Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life. Biology Letters 12(5). doi:10.1098/rsbl.2015.0976.


Gobler, CJ, Merlo, LR, Morell, BK, Griffith, AW. 2018. Temperature, Acidification and Food Supply Interact Negatively to Affect the Growth and Survival of the Forage Fish, Menidia beryllina (Inland Silverside) and Cyprinodon variegatus (Sheepshead Minnow). Frontiers in Marine Science.  https://doi.org/10.3389/fmars.2018.00086


Gobler, C. J., Clark, H. R., Griffith, A. W., & Lusty, M. W. (2017). Diurnal Fluctuations in Acidification and Hypoxia Reduce Growth and Survival of Larval and Juvenile Bay Scallops (Argopecten irradians) And Hard Clams (Mercenaria mercenaria). Frontiers in Marine Science. http://dx.doi.org/10.3389/fmars.2016.00282


Grear, J. 2016. Translating crustacean biological responses from CO2 bubbling experiments into population-level predictions. Population Ecology 58(4): 515-524. doi:10.1007/s10144-016-0562-1.


Hall, L.W. 1987. Acidification effects on larval striped bass, Morone saxatilis, in Chesapeake Bay tributaries: A review. Water, Air, and Soil Pollution 35: 87. doi: 10.1007/BF00183845.   


Hendrey, G.R. 1987. Acidification and anadromous fish of Atlantic estuaries. Water, Air, and Soil Pollution 35: 1-6. doi: 10.1007/BF00183838.   


Keppel, A.G., Breitburg, D.L., Burrell, R.B. 2016. Effects of co-varying diel-cycling hypoxia and pH on growth in the juvenile eastern oyster, Crassostrea virginica. PLOS ONE 11(8): 31. doi: 10.1371/journal.pone.0161088.   


Keppel, A.G., Breitburg, D.L., Wikfors, G.H., Burrell, R.B., Clark, V.M. 2015. Effects of co-varying diel-cycling hypoxia and pH on disease susceptibility in the eastern oyster, Crassostrea virginica. Marine Ecology Progress Series 538 (1): 169-183. doi: 10.3354/meps11479.   


Keppel, E.A., Scrosati, R.A., Courtenay, S.C. 2012. Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. Journal of Northwest Atlantic Fishery Science 44: 61-66. doi: 10.2960/J.v44.m683.   


Klauda, R.J. 1989. Definitions of critical environmental conditions for selected Chesapeake Bay finfishes exposed to acidic episodes in spawning and nursery habitats. Technical Reports. Report Number: PB-90-161928/XAB.  


Kriefall, N. G., Pechenik, J. A., Pires, A., & Davies, S. W. (2018). Resilience of Atlantic slippersnail Crepidula fornicata larvae in the face of severe coastal acidification. Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2018.00312


McLean EL, Katenka NV, Seibel BA. 2018. Decreased Growth and Increased Shell Disease in Early Benthic Phase Homarus americanus in Response to Elevated CO2. Marine Ecology Progress Series.596:113-126. https://doi.org/10.3354/meps12586


Meseck, SL, Mercaldo-Allen, R, Kuropat, C, Clark, P, Goldberg, R. 2018. Variability in Sediment-water Carbonate Chemistry and Bivalve Abundance after Bivalve Settlement in Long Island Sound, Milford, Connecticut. Marine Pollution Bulletin. 135:165-175. https://doi.org/10.1016/j.marpolbul.2018.07.025


Miller, S.H., Breitburg, D.L., Burrell, R.B., Keppel, A.G. 2016. Acidification increases sensitivity to hypoxia in important forage fishes. Marine Ecology Progress Series 549: 1-8.doi: 10.3354/meps11695.   


Murray, C., Malvezzi, A., Gobler, C., Baumann, H. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504: 1-11. doi: 10.3354/meps10791.http://dx.doi.org/10.3354/meps11695.   


Nardone, J. A., Patel, S., Siegel, K. R., Tedesco, D., McNicholl, C. G., O’Malley, J, Herrick, J, Metzler, R.A., Orihuela, B, Rittschof, D, Dickinson, G. H. (2018). Assessing the impacts of ocean acidification on adhesion and shell formation in the barnacle Amphibalanus amphitrite. Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2018.00369


Poach, M, Munroe, D, Vasslides, J, Abrahamsen, I, Coffey, N. (2019) Monitoring coastal acidification along the U.S. East coast: concerns for shellfish production. Bulletin of Japanese Fisheries Research Education. 49: 53-64. http://www.fra.affrc.go.jp/bulletin/bull/bull49/49-0508.pdf


Raven, JA, Gobler, CJ, Hansen, PJ. 2019 (in press). Dynamic CO2 and pH Levels in Coastal, Estuarine, and Inland Waters: Theoretical And Observed Effects On Harmful Algal Blooms. Harmful Algae. https://doi.org/10.1016/j.hal.2019.03.012.


Richards, M., Xu, W., Mallozzi, A., Errera, R. M., & Supan, J. (2018). Production of calcium-binding proteins in Crassostrea virginica in response to increased environmental CO2 concentration. Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2018.00203


Speir, H.J. 1987. Status of some finfish stocks in the Chesapeake Bay. Water, Air, and Soil Pollution 35(1-2): 49-62. doi: 10.1007/BF00183843.   


Stevens, AM, Gobler, CJ. 2018. Interactive effects of acidification, hypoxia, and thermal stress on growth, respiration, and survival of four North Atlantic bivalves. Marine Ecology Progress Series. 604:143-161. https://doi.org/10.3354/meps12725.


Tai, TC, Harley, C, Cheung, W. 2018. Comparing Model Parameterizations of the Biophysical Impacts of Ocean Acidification to Identify Limitations and Uncertainties. Ecological Modelling. 385: 1-11. https://doi.org/10.1016/j.ecolmodel.2018.07.007


Talmage, S.C., Gobler, C.J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and eastern oysters (Crassostrea virginica). Limnology and Oceanography 54(6): 2072-2080. doi: 10.4319/lo.2009.54.6.2072.   


Talmage, S.C., Gobler, C.J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107(40): 17246-17251. doi: 10.1073/pnas.0913804107.   


Tomasetti, SJ, Morrell, BR, Merlo, LR, Gobler, CJ. 2018. Individual and Combined Effects of Low Dissolved Oxygen and Low pH on Survival of Early Stage Larval Blue Crabs, Callinectes sapidus. PLOS ONE. 13(12): e0208629 https://doi.org/10.1371/journal.pone.0208629.


Vasquez, M.C., Murillo, A., Brockmann, H.J., Julian, D. 2015. Multiple-stressor interactions influence embryo development rate in the American horseshoe crab, Limulus polyphemus. Journal of Experimental Biology 218(15): 2355-2364. doi: 10.1242/jeb.117184.   


Waldbusser, G.G., Powell, E.N., Mann, R. 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94(4): 895-903. doi: 10.1890/12-1179.1.   


Waldbusser, G.G., Steenson, R.A., Green, M.A. 2011. Oyster shell dissolution rates in estuarine waters: Effects of pH and shell legacy. Journal of Shellfish Research 30(3): 659-669. doi: 10.2983/035.030.0308.   


Waldbusser, G.G., Voigt, E., Bergschneider, H., Green, M., Newell, R. 2011. Biocalcification in the Eastern Oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries and Coasts 34(2): 221-231. doi: 10.1007/s12237-010-9307-0.   


Young, C.S. Gobler, C.J. 2016. Ocean acidification accelerates the growth of two bloom-forming macroalgae. Plos ONE 11(5): 1-21. doi: 10.1371/journal.pone.0155152.   


Young, CS, Lowell, A, Peterson, B, Gobler, CJ. 2019. Ocean Acidification And Food Limitation Combine to Suppress Herbivory by the Gastropod Lacuna vincta. Marine Ecology Progress Series. 627:83-94. https://doi.org/10.3354/meps13087


Zimmerman, R.C., Hill, V.J., Gallegos, C.L. 2015. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnology and Oceanography 60(5): 1781-1804. doi: 10.1002/lno.10139.  

IV. Acclimation and Adaptation to Ocean Acidification

Lombardi, S.A., Harlan, N.P., Paynter, K.T. 2013. Survival, acid-base balance, and gaping responses of the Asian oyster Crassostrea ariakensis and the Eastern oyster Crassostrea virginica during clamped emersion and hypoxic immersion.  Journal of Shellfish Research 32(2): 409-415. http://dx.doi.org/10.2983/035.032.0221.


Malvezzi, A.J., Murray, C.S., Feldheim, K.A., DiBattista, J.D., Garant, D., Gobler, C.J., Chapman, D.D., Baumann, H. 2015. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evolutionary Applications 8(4): 352-362. doi: 10.1111/eva.12248.  


Wahl, M. Covachã, SS. Saderne, V, Hiebenthal, C, Müller, JD, Pansch, C, Sawall, Y. (2018). Macroalgae may Mitigate Ocean Acidification Effects on Mussel Calcification by Increasing pH and its Fluctuations. Limnology and Oceanography. 63(1):3-21. https://doi.org/10.1002/lno.10608


Young, CS, and Gobler, CJ. (2019). The Ability of Macroalgae to Mitigate the Negative Effects of Ocean Acidification on Four Species of North Atlantic Bivalve. Biogeosciences. 15:6167–6183. https://doi.org/10.5194/bg-15-6167-2018

V. Ocean Acidification and Economy/Societal Impact

Cooley, S., Doney, S. 2009. Anticipating ocean acidification's economic consequences for commercial fisheries. Environmental Research Letters 4(2). doi: 10.1088/1748-9326/4/2/024007.   


Cooley, S., Jewett, E., Reichert, J., Robbins, L., Shrestha, G., Wieczorek, D., Weisberg, S. 2015. Getting ocean acidification on decision makers’ to-do lists: Dissecting the process through case studies. Oceanography 28(2): 198-211. http://dx.doi.org/10.5670/oceanog.2015.42.   


Cooley, S.R., Ono, C.R., Melcer, S., Roberson, J. 2016. Community-Level Actions that can address ocean acidification. Frontiers in Marine Science 27. https://doi.org/10.3389/fmars.2015.00128.  


Cooley, S., Rheuban, J., Glover, D., Doney, S., Hart, D., Luu, V., Hare, J. 2015. An integrated assessment model for helping the united states sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. Plos ONE 10(5): 1-27. http://dx.doi.org/10.1371/journal.pone.0124145


Cross, JN, Turner, JA, Cooley, SR, Newton, JA, Azetsu-Scott, K, Chambers, CR, Dugan, D, Goldsmith, K, Gurney-Smith, H, Harper, AR, Jewett, EB, Joy, D, King, T, Klinger, T, Kurz M, Morrison, J, Motyka, J, Ombres, EH, Saba, G, Silva, EL, Smits, E, Vreeland-Dawson, J, Wickes, L. 2019. Building the Knowledge-to-Action Pipeline in North America: Connecting Ocean Acidification Research and Actionable Decision Support. Frontiers in Marine Science. 6:356. https://doi.org/10.3389/fmars.2019.00356


Ekstrom, J., Suatoni, L., Cooley, S., Pendleton, L., Waldbusser, G., and others. 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change 5(3): 207-214. doi: 10.1038/nclimate2508.  


Olsen, E, Kaplan, IC, Ainsworth, C., Fay, G., Gaichas, S., Gamble, R., et al. (2018). Ocean Futures Under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models. Frontiers in Marine Science. 5:64. https://doi.org/10.3389/fmars.2018.00064

VI. Guidelines for Monitoring and Experimentation

Andersson, A.J., Kline, D.I., Edmunds, P.J., Archer, S.D., Bednaršek, N., Carpenter, R.C., Chadsey, M., Goldstein, P., Grottoli, A.G., Hurst, T.P., King, A.L., Kübler, J.E., Kuffner, I.B.,

Mackey, K.R.M., Menge, B.A., Paytan, A., Riebesell, U., Schnetzer, A., Warner, M.E., and

Zimmerman, R.C. 2015. Understanding ocean acidification impacts on organismal

to ecological scales. Oceanography 28(2):16–27, http://dx.doi.org/10.5670/

oceanog.2015.27


Bresnahan, P.J., Martz, T.R., Takeshita Y., Johnson, K.S., LaShomb, M. 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods in Oceanography 9: 44-60. https://doi.org/10.1016/j.mio.2014.08.003 


Dickson, A.G., Sabine, C.L., Christian, J.R. 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special, Publication 3, p. 191. https://www.nodc.noaa.gov/ocads/oceans/Handbook_2007.html


Gimenez, I, Waldbusser, GG, Langdon, CJ, Hales, BR. 2019. The Dynamic Ocean Acidification Manipulation Experimental System: Separating Carbonate Variables and Simulating Natural Variability in Laboratory Flow‐through Experiments. Limnology and Oceanography Methods. 17(6):343-361. https://doi.org/10.1002/lom3.10318


Goldsmith, K.A., Lau, S., Poach, M.E., Sakowicz, G.P., Trice, T.M., Ono, R.C., Nye, J., Shadwick, E.H., St.Laurent, K.A., Saba, G.K. 2019. Scientific Considerations for Acidification Monitoring in the U.S. Mid-Atlantic Region. Estuarine, Coastal and Shelf Science 225: 106189, https://doi.org/10.1016/j.ecss.2019.04.023.


Kapsenberg, L, Bockmon, EE, Bresnahan, PJ, Kroeker, KJ, Gattuso, J, Martz, TR. (2017). Advancing Ocean Acidification Biology Using Durafet® PH Electrodes. Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2017.00321


Pimenta, A.R. and Grear, J.S. 2018. Guidelines for Measuring Changes in Seawater pH and Associated Carbonate Chemistry in Coastal Environments of the Eastern United States. Environmental Protection Agency Office of Research and Development. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100UDMR.txt 


Riebesell, U., Fabry, V.J., Hansson, L. and Gattuso, J.-P., eds. 2011 Guide to best practices for ocean acidification research and data reporting. Office for Official Publications of the European Communities, Luxembourg, 258 pp. http://dx.doi.org/10.2777/66906


Saba, G.K., Goldsmith, K.A., Cooley, S.R., Grosse, D., Meseck, S.L., Miller, W., Phelan, B., Poach, M., Rheault, R., St. Laurent, K., Testa, J., Weis, J.S., Zimmerman, R. 2019. Recommended Priorities for Research on Ecological Impacts of Coastal and Ocean Acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science 225: 106188, https://doi.org/10.1016/j.ecss.2019.04.022.


Sastri, A. R., Christian, J. R., Achterberg, E. P., Atamanchuk, D., Buck, J. J. H., Bresnahan, P., Duke P. J., Evans W., Gonski S. F., Johnson B., Juniper S. K., Mihaly S., Miller L. A., Morley M., Murphy D., Nakaoka S., Ono T., Parker G., Simpson K., Tsunoda, T. (2019). Perspectives on in situ sensors for ocean acidification research. Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2019.00653


Shangguan, Q., Shu, H., Li, P., Lin, K., Byrne, R. H., Li, Q., et al. (2019). Automated spectrophotometric determination of carbonate ion concentration in seawater using a portable syringe pump based analyzer. Marine Chemistry. 209: 120–127. https://doi.org/10.1016/j.marchem.2019.01.007


Starka, JS, Peltzer, ET, Kline, DI, Queiróse, AM, Cox, TE, Headley, K, Barry, J, Gazeauf, F, Runciehi, JW, Widdicombee, S, Milnesa, M, Roden, NP, Black, J, Whiteside, S, Johnstone, G, Ingels, J, Shawl, E, Bodrossy, L, Gaitan-Espitia, JD, Kirkwood, WL, Gattusofo, JP. 2019. Free Ocean CO2 Enrichment (FOCE) experiments: Scientific and Technical Recommendations for Future In Situ Ocean Acidification Projects. Progress in Oceanography.172: 89-107. https://doi.org/10.1016/j.pocean.2019.01.006


Turk, D., Wang, H., Hu, X., Gledhill, D. K., Wang, Z. A., Jiang, L., & Cai, W. (2019). Time Of Emergence of Surface Ocean Carbon Dioxide Trends in the North American Coastal Margins in Support of Ocean Acidification Observing System Design. Frontiers in Marine Science. http://dx.doi.org/10.3389/fmars.2019.00091


Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M., Feely, R. A., Gledhill, D. K., et al. (2019). An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange. Frontiers in Marine Science. 6:337. https://doi.org/10.3389/fmars.2019.00337


Wang, ZA, Moustahfid, H, Mueller, AV, Michel, APM, Mowlem, M, Glazer, BT, Mooney, TA, Michaels, M, McQuillan, JS, Robidart, JC, Churchill, J, Sourisseau, M, Daniel, A, Schaap, A, Monk, S, Friedman, K, Brehmer, P. (2019). Advancing Observation of Ocean Biogeochemistry, Biology, And Ecosystems With Cost-Effective In Situ Sensing Technologies. Frontiers in Marine Science, http://dx.doi.org/10.3389/fmars.2019.00519