Reference Library

I. Acidification Overviews and Reviews

Doney, S.C., Balch, W.M., Fabry, V.J. and Feely, R.A. 2009. Ocean acidification: A Critical emerging problem for the ocean sciences. Oceanography 22: 16-25. http://dx.doi.org/10.5670/oceanog.2009.93

Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1: 169-192. doi:10.1146/annurev.marine.010908.163834.   

Fabry, V.J., Seibel, B.A., Feely, R.A., Orr, J. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. Journal of Marine Science 65: 414-432. https://doi.org/10.1093/icesjms/fsn048.   

Feely, R., Doney, S., Cooley, S. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22(4): 36-47. doi:10.5670/oceanog.2009.95.   

Honisch, B. Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., and others. 2012. The geological record of ocean acidification. Science 335(6074): 1058-1063. doi: 10.1126/science.1208277.    

Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M., Gattuso, J.-P. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884-1896. doi: 10.1111/gcb.12179.   

Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., and others. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686. doi:10.1038/nature04095.   

Pörtner, H.O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Marine Ecology Progress Series 373: 203–217. doi: 10.3354/meps07768.   

Salisbury, J., Green, M., Hunt, C., Campbell, J. 2008. Coastal acidification by rivers: A Threat to shellfish? EOS Transactions, American Geophysical Union 89(50): 513-513. doi:10.1029/2008EO50000.  

II. Observation and Monitoring

Baker, J.P., Van Sickle, J., Gagen, C.J., Dewalle, D.R., Sharpe, W.E., and others. 2012. Episodic acidification of small streams in the northeastern United States: Effects on fish populations. Ecological Applications 6(2): 422-437. doi: 10.2307/2269380.   

Cai, W.J., Huang W.J., Luther III, G.W., Pierrot, D., Li, M., Testa, J., and others. 2017. Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay, Nature Communications 8(369). doi: 10.1038/s41467-017-00417-7 

Cirmo, C.P., Driscoll, C.T. 1996. The Impacts of a watershed CaCO3 treatment on stream and wetland biogeochemistry in the Adirondack Mountains. Biogeochemistry 32(3): 265-297. doi: 10.1007/BF02187142.   

Correll, D.L., Miklas, J.J., Hines, H., Schafer, J.J. 1987. Chemical and biological trends associated with acidic atmospheric deposition in the Rhode River watershed and estuary. Water, Air, & Soil Pollution 35(1-2): 63-86. doi: 10.1007/BF00183844.   

Science assessment of Chesapeake Bay acidification: Toward a research and monitoring strategy. (2014). ACT Technology Workshop Reports, Act Ws14-01, i-22. Retrieved from: http://dnr.maryland.gov/waters/bay/Documents/MDOATF/OA_ACT-CB_AcidificationWorkshopReport_March2014.pdf.   

Wallace, R.B., Baumann, H., Grear, J.S., Aller, R.C., Gobler, C.J. 2014. Coastal ocean acidification: The other eutrophication problem. Estuarine, Coastal and Shelf Science 148: 1-13. https://doi.org/10.1093/icesjms/fsn048.  

Xu, Y.Y., Cai, W.J, Gao, Y., Wanninkhof, R., Salisbury, J., Chen, B., Reimer, J.J., Gonski, S. and Hussain, N. 2017. Short-term variability of aragonite saturation state in the central Mid-Atlantic Bight, Journal of Geophysical Research: Oceans 122. doi: 10.1002/2017JC012901.

III. Ocean Acidification Impacts on Organisms

Alava J.J., Cheung W.W.L., Ross P.S., Sumaila U.R. 2017. Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Glob Change Biol. 00:1–18. https://doi.org/10.1111/gcb.13667  

Arnold, T., Mealey, C., Leahey, H., Miller, A.W., Hall-Spencer, J.M., Milazzo, M., Maers, K. 2012. Ocean acidification and the loss of phenolic substances in marine plants. PLoS ONE 7(4). doi: 10.1371/journal.pone.0035107.     

Baumann, H., Talmage, S.C., Gobler, C.J. 2012. Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change 2(1): 38-41. doi:10.1038/nclimate1291.   

Chambers, R.C., Candelmo, A.C., Habeck, E.A., Poach, M.E., Wieczorek, D., Cooper, K.R., Greenfield, C.E., Phelan, B.A. 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences 11(6): 1613-1626. doi: 10.5194/bg-11-1613-2014.   

Clark HR, Gobler CJ (2016) Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar Ecol Prog Ser 558:1-14. https://doi.org/10.3354/meps11852

Duckworth, A.R., Peterson, B.J. 2013. Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Marine Biology 160(1): 27-35. doi: 10.1007/s00227-012-2053-z.   

Fay, G., Link, J.S., Hare, J.A. 2017. Assessing the effects of ocean acidification in the Northeast US using an end-to- end marine ecosystem model. Ecological Modelling 347: 1-10. doi: 10.1016/j.ecolmodel.2016.12.016.   

Giltz S.M. and Taylor C.M. 2017. Reduced Growth and Survival in the Larval Blue Crab Callinectes sapidus Under Predicted Ocean Acidification. J. Shellfish Res. 36(2):481-485. https://doi.org/10.2983/035.036.0219  

Gobler, C., Baumann, H. 2016. Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life. Biology Letters 12(5). doi:10.1098/rsbl.2015.0976.   

Grear, J. 2016. Translating crustacean biological responses from CO2 bubbling experiments into population-level predictions. Population Ecology 58(4): 515-524. doi:10.1007/s10144-016-0562-1.

Hall, L.W. 1987. Acidification effects on larval striped bass, Morone saxatilis, in Chesapeake Bay tributaries: A review. Water, Air, and Soil Pollution 35: 87. doi: 10.1007/BF00183845.   

Hendrey, G.R. 1987. Acidification and anadromous fish of Atlantic estuaries. Water, Air, and Soil Pollution 35: 1-6. doi: 10.1007/BF00183838.   

Keppel, A.G., Breitburg, D.L., Burrell, R.B. 2016. Effects of co-varying diel-cycling hypoxia and pH on growth in the juvenile eastern oyster, Crassostrea virginica. PLOS ONE 11(8): 31. doi: 10.1371/journal.pone.0161088.   

Keppel, A.G., Breitburg, D.L., Wikfors, G.H., Burrell, R.B., Clark, V.M. 2015. Effects of co-varying diel-cycling hypoxia and pH on disease susceptibility in the eastern oyster, Crassostrea virginica. Marine Ecology Progress Series 538 (1): 169-183. doi: 10.3354/meps11479.   

Keppel, E.A., Scrosati, R.A., Courtenay, S.C. 2012. Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. Journal of Northwest Atlantic Fishery Science 44: 61-66. doi: 10.2960/J.v44.m683.   

Klauda, R.J. 1989. Definitions of critical environmental conditions for selected Chesapeake Bay finfishes exposed to acidic episodes in spawning and nursery habitats. Technical Reports. Report Number: PB-90-161928/XAB.   

Miller, S.H., Breitburg, D.L., Burrell, R.B., Keppel, A.G. 2016. Acidification increases sensitivity to hypoxia in important forage fishes. Marine Ecology Progress Series 549: 1-8.doi: 10.3354/meps11695.   

Murray, C., Malvezzi, A., Gobler, C., Baumann, H. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series 504: 1-11. doi: 10.3354/meps10791.http://dx.doi.org/10.3354/meps11695   

Speir, H.J. 1987. Status of some finfish stocks in the Chesapeake Bay. Water, Air, and Soil Pollution 35(1-2): 49-62. doi: 10.1007/BF00183843.   

Talmage, S.C., Gobler, C.J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and eastern oysters (Crassostrea virginica). Limnology and Oceanography 54(6): 2072-2080. doi: 10.4319/lo.2009.54.6.2072.   

Talmage, S.C., Gobler, C.J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America 107(40): 17246-17251. doi: 10.1073/pnas.0913804107.   

Vasquez, M.C., Murillo, A., Brockmann, H.J., Julian, D. 2015. Multiple-stressor interactions influence embryo development rate in the American horseshoe crab, Limulus polyphemus. Journal of Experimental Biology 218(15): 2355-2364. doi: 10.1242/jeb.117184.   

Waldbusser, G.G., Powell, E.N., Mann, R. 2013. Ecosystem effects of shell aggregations and cycling in coastal waters: an example of Chesapeake Bay oyster reefs. Ecology 94(4): 895-903. doi: 10.1890/12-1179.1.   

Waldbusser, G.G., Steenson, R.A., Green, M.A. 2011. Oyster shell dissolution rates in estuarine waters: Effects of pH and shell legacy. Journal of Shellfish Research 30(3): 659-669. doi: 10.2983/035.030.0308.   

Waldbusser, G.G., Voigt, E., Bergschneider, H., Green, M., Newell, R. 2011. Biocalcification in the Eastern Oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries and Coasts 34(2): 221-231. doi: 10.1007/s12237-010-9307-0.   

Young, C.S. Gobler, C.J. 2016. Ocean acidification accelerates the growth of two bloom-forming macroalgae. Plos ONE 11(5): 1-21. doi: 10.1371/journal.pone.0155152.   

Zimmerman, R.C., Hill, V.J., Gallegos, C.L. 2015. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnology and Oceanography 60(5): 1781-1804. doi: 10.1002/lno.10139.  

IV. Acclimation and Adaptation to Ocean Acidification

Lombardi, S.A., Harlan, N.P., Paynter, K.T. 2013. Survival, acid-base balance, and gaping responses of the Asian oyster Crassostrea ariakensis and the Eastern oyster Crassostrea virginica during clamped emersion and hypoxic immersion.  Journal of Shellfish Research 32(2): 409-415. http://dx.doi.org/10.2983/035.032.0221.

Malvezzi, A.J., Murray, C.S., Feldheim, K.A., DiBattista, J.D., Garant, D., Gobler, C.J., Chapman, D.D., Baumann, H. 2015. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evolutionary Applications 8(4): 352-362. doi: 10.1111/eva.12248.  

V. Ocean Acidification and Economy/Societal Impact

Cooley, S., Doney, S. 2009. Anticipating ocean acidification's economic consequences for commercial fisheries. Environmental Research Letters 4(2). doi: 10.1088/1748-9326/4/2/024007.   

Cooley, S., Jewett, E., Reichert, J., Robbins, L., Shrestha, G., Wieczorek, D., Weisberg, S. 2015. Getting ocean acidification on decision makers’ to-do lists: Dissecting the process through case studies. Oceanography 28(2): 198-211. http://dx.doi.org/10.5670/oceanog.2015.42.   

Cooley, S.R., Ono, C.R., Melcer, S., Roberson, J. 2016. Community-Level Actions that can address ocean acidification. Frontiers in Marine Science 27. https://doi.org/10.3389/fmars.2015.00128.  

Cooley, S., Rheuban, J., Glover, D., Doney, S., Hart, D., Luu, V., Hare, J. 2015. An integrated assessment model for helping the united states sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. Plos ONE 10(5): 1-27. http://dx.doi.org/10.1371/journal.pone.0124145

Ekstrom, J., Suatoni, L., Cooley, S., Pendleton, L., Waldbusser, G., and others. 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change 5(3): 207-214. doi: 10.1038/nclimate2508.