Ocean acidification changes water chemistry in ways that can hinder how marine species grow, reproduce, and survive.
Introduction to Biological Impacts from Acidification
Species react differently to environmental pH and aragonite saturation values. “Thresholds”, or tipping points, are a level when negative reactions start to occur, however, there can be a range of biological reactions to low pH and aragonite saturation values. There are natural differences in pH and aragonite saturation values across different coastal and marine habitats. Species can survive in a range of conditions, however, long-term survival depends on how species respond to unfavorable conditions at various life stages. For example, while adult species may be able to survive at low pH or aragonite saturation conditions, larval stages may not be able to survive in those same conditions.

Understanding the Biological Impacts Graphics
The Biological Impacts Graphics show conditions where negative impacts have been observed (blue and teal points and ranges), and potentially lethal (red lines) conditions for Mid-Atlantic species. Any pH or aragonite saturation state value above the points or ranges are considered to be healthy conditions where negative responses were not observed within the studies that were surveyed to create these graphics.
The conditions in the graphics show information that was compiled through a literature search of 80 publications (listed below). Some publications provided information on multiple species. All of the results are from laboratory experiments where seawater chemistry has been altered to simulate “acidic conditions”.

What is pH and Why is It Important?

pH is a scale that measures how acidic or basic the water is and ranges from 0 to 14. A pH of 7 is neutral, while values below 7 are acidic and values above 7 are basic. Each whole pH value (for example 7 to 8) represents a tenfold change in acidity or basicity. Typical open ocean pH is 8.2 to 8.1, whereas coastal and estuarine pH is lower, typically around 7.9.
Organisms can not survive when pH is too low or too high. When pH gets too low, or acidic, for organisms, biological functions such as reproduction, shell or skeleton formation, and growth can decrease or stop altogether.
Appelhans, Y. S., Thomsen, J., Pansch, C., Melzner, F., and Wahl, M. 2012. Sour times: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar. Ecol. Prog. Ser., 459: 85-97. doi: 10.3354/meps09697
Appelhans, Y. S., Thomsen, J., Opitz, S., Pansch, C., Melzner, F., and Wahl, M. 2014. Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Mar. Ecol. Prog. Ser., 509: 227-239. doi: 10.3354/meps10884
Bechmann, R. K., Taban, I. C., Westerlund, S., Godal, B. F., Arnberg, M., Vingen, S., Ingvarsdottir, A., and Baussant, T. 2011. Effects of Ocean Acidification on Early Life Stages of Shrimp (Pandalus borealis) and Mussel (Mytilus edulis). J. Toxicol. Environ. Health - A, 74(7-9): 424-438. https://doi.org/10.1080/15287394.2011.550460
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri, F., et al. 2019. Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming. Front. Mar. Sci., 6: 227. doi: 10.3389/fmars.2019.00227
Bednaršek, N., Ambrose, R., Calosi, P., Childers, R. K., Feely, R. A., et al. 2021. Synthesis of Thresholds of Ocean Acidification Impacts on Decapods. Front. Mar. Sci., 8: 651102. doi: 10.3389/fmars.2021.651102
Beniash, E., Ivanina, A., Lieb, N. S., Kurochkin, I., and Sokolova, I. M. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar. Ecol. Prog. Ser., 419: 95-108. doi: 10.3354/meps08841
Bibby, R., Cleall-Harding, P., Rundle, S., Widdicombe, S., and Spicer, J. 2007. Ocean acidification
Bignami, S., Sponaugle, S., and Cowen, R. K. 2013. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum. Glob. Change Biol., 19(4): 996-1006. doi: 10.1111/gcb.12133
Bignami, S., Sponaugle, S., and Cowen, R. K. 2014. Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquat. Biol., 21: 249-260. doi: 10.3354/ab00598
Bromhead, D., Scholey, V., Nicol, S., Margulies, D., Wexler, J., et al. 2015. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep-Sea Res. II: Top. Stud. Oceanogr., 113: 268-279. https://doi.org/10.1016/j.dsr2.2014.03.019
Cameron, L. P., Grabowski, J. H., and Ries, J. B. 2022. Effects of elevated pCO2 and temperature on the calcification rate, survival, extrapallial fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus. Limnol. Oceanogr., 67: 1670-1686. doi: 10.1002/lno.12153
Chambers, R. C., Candelmo, A. C., Habeck, E. A., Poach, M. E., Wieczorek, D., Cooper, K. R., Greenfield, C. E., and Phelan, B. A. 2014. Effects of elevated CO2 in the early life stages of summer flounder, Paralichthys dentatus, and potential consequences of ocean acidification. Biogeosciences, 11: 1613-1626. doi: 10.5194/bg-11-1613-2014
Clark, H. R. and Gobler, C. J. 2016. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar. Ecol. Prog. Ser., 558: 1-14. doi: 10.3354/meps11852
Clements, J. C., Carver, C. E., Mallet, M. A., Comeau, L. A., and Mallet, A. L. 2021. CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages. ICES J. Mar. Sci., 78(1): 349-359. https://doi.org/10.1093/icesjms/fsaa089
Czaja, R., Jr., Holmberg, R., Espinosa, E. P., Hennen, D., Cerrato, R., et al. 2023. Behavioral and physiological effects of ocean acidification and warming on larvae of a continental shelf bivalve. Mar. Pollut. Bull., 192: 115048. https://doi.org/10.1016/j.marpolbul.2023.115048
Dahlke, F. T., Leo, E., Mark, F. C., Pörtner, H.-O., Bickmeyer, U., Frickenhaus, S., and Storch, D. 2017. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Glob. Change Biol., 23: 1499-1510. doi: 10.111/gcb.13527
DePasquale, E., Baumann, H., and Gobler, C. J. 2015. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Mar. Ecol. Prog. Ser., 523: 145-156. doi: 10.3354/meps11142
Devergne, J., Loizeau, V., Lebigre, C., Bado-Nilles, A., Collet, S., Mouchel, O., Iaria, U., Le Gall, M.-M., Madec, L., Turiès, C., and Servili, A. 2023. Impacts of Long-Term Exposure to Ocean Acidification and Warming on Three-Spined Stickleback (Gasterosteus aculeatus) Growth and Reproduction. Fishes, 8(10): 523. https://doi.org/10.3390/fishes8100523
Dickinson, G. H., Ivanina, A. V., Matoo, O. B., Pörtner, H.-O., Lannig, G., et al. 2012. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol., 215: 29-43. doi: 10.1242/jeb.0614841
Dickinson, G. H., Matoo, O. B., Tourek, R. T., Sokolova, I. M., and Beniash, E. 2013. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria. J. Exp. Biol., 216: 2607-2618.
Di Santo, V. 2016. Intraspecific variation in physiological performance of a benthic elasmobranch challenged by ocean acidification and warming. J. Exp. Biol., 219: 1725-1733. doi: 10.1242/jeb.139204
Dodd, L. F., Grabowski, J. H., Piehler, M. F., Westfield, I., and Ries, J. B. 2021. Juvenile Eastern Oysters More Resilient to Extreme Ocean Acidification than Their Mud Crab Predators. Geochem. Geophys. Geosystems, 22: e2020GC009180
Ellis, R. P., Bersey, J., Rundle, S. D., Hall-Spencer, J. M., and Spicer, J. I. 2009. Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol., 5: 41-48. doi: 10.3354/ab00118
Ferreira, S. 2021. Future ocean warming and acidification: Simultaneous impacts on the green crab Carcinus maenas. Masters thesis, Abel Salazar Institute of Biomedical Sciences, University of Porto.
Franke, A. and Clemmesen, C. 2011. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosci., 8: 3697-3707. doi: 10.5194/bg-8-3697-2011
Frommel, A. Y., Maneja, R., Lowe, D., Malzahn, A. M., Geffen, A. J., et al. 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change, 2: 42-46. doi: 10.1038/nclimate1324
Frommel, A. Y., Margulies, D., Wexler, J. B., Stein, M. S., Scholey, V. P., Williamson, J. E., Bronhead, D., Nicol, S., and Havenhand, J. 2016. Ocean acidification has lethal and sub-lethal effects on larval development of yellowfin tuna, Thunnus albacares. J. Exp. Mar. Biol. Ecol., 482: 18-24. https://doi.org/10.1016/j.jembe.2016.04.008
Gazeau, F., Gattuso, J.-P., Dawber, C., Pronker, A. E., Peene, F., Peene, J., Heip, C. H. R., and Middelburg, J. J. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Beogeosciences, 7: 2051-2060. doi: 10.5194/bg-7-2051-2010
Giltz, S. M., and Taylor, C. M. 2017. Reduced Growth and Survival in the Larval Blue Crab Callinectes sapidus Under Predicted Ocean Acidification. J. Shellfish Res., 36(2): 481-485. https://doi.org/10.2983/035.036.0219
Glaspie, C. N., Longmire, K., and Seitz, R. D. 2017. Acidification alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria. J. Exp. Mar. Biol. Ecol., 489: 58-65. https://doi.org/10.1016/j.jembe.2016.11.010
Gobler, C. J. and Talmage, S. C. 2013. Short- and long-term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosci., 10: 2241-2253.
Gobler, C. J. and Talmage, S. C. 2014. Physiological response and resilience of early life-stage Eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conserv. Physiol., 2(1): cou004. https://doi.org/10.1093/conphys/cou004
Gobler, C. J., DePasquale, E. L., Griffith, A. W., and Baumann, H. 2014. Hypoxia and Acidification Have Additive and Synergistic Negative Effects on the Growth, Survival, and Metamorphosis of Early Life Stage Bivalves. PLoS ONE, 9(1): e83648. https://doi.org/10.1371/journal.pone.0083648
Gobler, C. J., Merlo, L. R., Morrell, B. K., Griffith, A. W. 2018. Temperature, Acidification, and Food Supply Interact to Negatively Affect the Growth and Survival of the Forage Fish, Menidia beryllina (Inland Silverside), and Cyprinodon variegatus (Sheepshead Minnow). Front. Mar. Sci., 5: 86. doi: 10.3389/fmars.2018.00086
Goldstein, J., Augustin, C. B., Bleich, S., and Holst, S. 2017. A matter of tolerance: Distribution potential of scyphozoan polyps in a changing environment. Mar. Ecol., 38(5): e12457. https://doi.org/10.1111/maec.12457
Gurr, S. J., McFarland, K., Bernatchez, G., Dixon, M. S., Guy, L., et al. 2024. Effects of food supply on northern bay scallops Argopecten irradians reared under two pCO2 conditions. Mar. Ecol. Prog. Ser., 740: 61-78. https://doi.org/10.3354/meps14624
Kaplan, M. B., Mooney, T. A., McCorkle, D. C., and Cohen, A. L. 2013. Adverse Effects of Ocean Acidification on Early Development of Squid (Doryteuthis pealeii). PLoS ONE, 8(5): e63714. https://doi.org/10.1371/journal.pone.0063714
Keppel, E. A., Scrosati, R. A., and Courtenay, S. C. 2012. Ocean Acidification Decreases Growth and Development in American Lobster (Homarus americanus) Larvae. J. Northw. Atl. Fish. Sci., 44: 61-66. doi: 10.2960/J.v44.m683
Kim, J.-H., Kang, E. J., Edwards, M. S., Lee, K., Jeong, H.-J., and Kim, K. Y. 2016. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae, 31(3): 243-256.
Kriefall, N. G., Pechenik, J. A., Pires, A., Davies, S. W. 2018. Resilience of Atlantic Slippersnail Crepidula fornicata Larvae in the Face of Severe Coastal Acidification. Front. Mar. Sci., 5: 312. doi: 10.3389/fmars.2018.00312
Li, S., Liu, C., Huang, J., Liu, Y., Zheng, G., Xie, L., and Zhang, R. 2015. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol., 218: 3623-3631. doi: 10.1242/jeb.126748
Liu, Y.-W., Wanamaker Jr., A. D., Aciego, S. M., Searles, I., Hangstad, T. A., Chierici, M., Carroll, M. L. 2023. Resistant calcification responses of Arctica islandica clams under ocean acidification conditions. J. Exp. Mar. Biol. Ecol., 560: 151855. https://doi.org/10.1016/j.jembe.2022.151855
Lonthair, J., Ern, R., and Esbaugh, A. J. 2017. The early life stages of an estuarine fish, the red drum (Sciaenops ocellatus), are tolerant to high pCO2. ICES J. Mar. Sci., 74(4): 1042-1050. https://doi.org/10.1093/icesjms/fsw225
Lowell, A., Infantes, E., West, L., Puishys, L., Hill, C. E. L., Ramesh, K., Peterson, B., Cebrian, J., Dupont, S., and Cox, T. E. 2021. How Does Ocean Acidification Affect the Early Life History of Zostera marina? A Series of Experiments Find Parental Carryover Can Benefit Viability or Germination. Front. Mar. Sci., 8: 762086. doi: 10.3389/fmars.2021.762086
McCormick, S. D. and Regish, A. M. 2018. Effects of ocean acidification on salinity tolerance and seawater growth of Atlantic salmon Salmo salar smolts. J. Fish. Biol., 93: 560-566. doi: 10.1111/jfb.13656
McGarrigle, S. A. and Hunt, H. L. 2023. Effects of semidiurnal water column acidification and sediment presence on growth and survival of the bivalve Mya arenaria. J. Exp. Mar. Biol. Ecol., 562: 151872. https://doi.org/10.1016/j.jembe.2023.151872
McLean, E. L., Katenka, N. V., and Seibel, B. A. 2018. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser., 596: 113-126. https://doi.org/10.3354/meps12586
Melatunan, S., Calosi, P., Rundle, S. D., Widdicombe, S., and Moody, A. J. 2013. Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod. Mar. Ecol. Prog. Ser., 742: 155-168. doi: 10.3354/meps10046
Menu-Courey, K., Noisette, F., Piedalue, S., Daoud, D., Blair, T., Blier, P. U., Azetsu-Scott, K., and Calosi, P. 2019. Energy metabolism and survival of the juvenile recruits of the American lobster (Homarus americanus) exposed to a gradient of elevated seawater pCO2. Mar. Environ. Res., 143: 111-123. https://doi.org/10.1016/j.marenvres.2018.10.002
Meseck, S. L., Redman, D. H., Mercaldo-Allen, R., Clark, P., Rose, J. M., and Perry, D. M. 2022. Resilience of Black Sea Bass Embryos to Increased Levels of Carbon Dioxide. Mar. Coast. Fish., 14(2): e10200. https://doi.org/10.1002/mcf2.10200
Miller, A. W., Reynolds, A. C., Sobrino, C., and Riedel, G. F. 2009. Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries. PLoS ONE, 4(5): e5661. doi: 10.1371/journal.pone.0005661
Miller, A. W., Reynolds, A., Minton, M. S., and Smith, R. 2020. Evidence for stage-based larval vulnerability and resilience to acidification in Crassostrea virginica. J. Molluscan Stud., 86(4): 342-351. https://doi.org/10.1093/mollus/eyaa022
Munday, P. L., Watson, S.-A., Parsons, D. M., King, A., Barr, N. G., Mcleod, I. M., Allan, B. J. M., and Pether, S. M. J. 2016. Effects of elevated CO2 on early life history development of the yellowtail kingfish, Seriola lalandi, a large pelagic fish. ICES J. Mar. Sci., 73(3): 641-649. https://doi.org/10.1093/icesjms/fsv210
Murray, C. S. and Baumann, H. 2018. You Better Repeat It: Complex CO2 × Temperature Effects in Atlantic Silverside Offspring Revealed by Serial Experimentation. Diversity, 10(3): 69. https://doi.org/10.3390/d10030069
Murray, C. S. and Baumann, H. 2020. Are long-term growth responses to elevated pCO2 sex-specific in fish? PLoS ONE, 15(7): e0235817. https://doi.org/10.1371/journal.pone.0235817
Murray, C. S., Malvezzi, A., Gobler, C. J., and Baumann, H. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser., 504: 1-11. https://doi.org/10.3354/meps10791
Murray, C. S., Wiley, D., and Baumann, H. 2019. High sensitivity of a keystone forage fish to elevated CO2 and temperature. Conserv. Physiol., 7(1): coz084. https://doi.org/10.1093/conphys/coz084
Noisette, F., Bordeyne, F., Davoult, D., and Martin, S. 2016. Assessing the physiological responses of the gastropod Crepidula fornicata to predicted ocean acidification and warming. Limnol. Oceanogr., 61: 430-444. doi: 10.1002/lno.10225
Noisette, F., Calosi, P., Madeira, D., Chemel, M., Menu-Courey, K., Piedalue, S., Gurney-Smith, H., Daoud, D., and Azetsu-Scott, K. 2021. Tolerant Larvae and Sensitive Juveniles: Integrating Metabolomics and Whole-Organism Responses to Define Life-Stage Specific Sensitivity to Ocean Acidification in the American Lobster. Metabolites, 11(9): 584. https://doi.org/10.3390/metabo11090584
Nunes, J., McCoy, S. J., Findlay, H. S., Hopkins, F. E., Kitidis, V., Queirós, A. M., Rayner, L., and Widdicombe, S. 2015. Two intertidal, non-calcifying macroalgae (Palmaria palmata and Saccharina latissima) show complex and variable responses to short-term CO2 acidification. ICES J. Mar. Sci., 73(3): 887-896. https://doi.org/10.1093/icesjms/fsv081
Padilla, D. K., Milke, L., Akin-Fajiye, M., Rosa, M., Redman, D., Liguori, A., Rugila, A., Veilleux, D., Dixon, M., Charifson, D., and Meseck, S. L. 2024. Local differences in robustness to ocean acidification. Biol. Open, 13(8): bio060479. https://doi.org/10.1242/bio.060479
Perry, D. M., Redman, D. H., Widman Jr., J. C., Meseck, S., King, A., and Pereira, J. J. 2015. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops. Ecol. Evol., 5(18): 4187-4196.
Pousse, E., Poach, M. E., Redman, D. H., Sennefelder, G., Hubbard, W., et al. 2023. Juvenile Atlantic sea scallop, Placopecten magellanicus, energetic response to increased carbon dioxide and temperature changes. PLOS Clim., 2(2): e0000142. https://doi.org/10.1371/journal.pclm.0000142
Ries, J. B., Cohen, A. L., and McCorkle, D. C. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37(12): 1131-1134. doi: 10.1130/G30210A.1
Ruiz-Jarabo, I., Laiz-Carrión, R., Ortega, A., de la Gándara, F., Quintanilla, J. M., and Mancera, J. M. 2022. Survival of Atlantic bluefin tuna (Thunnus thynnus) larvae hatched at different salinity and pH conditions. Aquaculture, 560: 738457. https://doi.org/10.1016/j.aquaculture.2022.738457
Schneider, G., Horta, P. A., Calderon, E. N., Castro, C., Bianchini, A., et al. 2018. Structural and physiological responses of Halodule wrightii to ocean acidification. Protoplasma, 255: 629-641. https://doi.rg/10.1007/s00709-017-1176-y
Schwaner, C., Barbosa, M., Schwemmer, T. G., Espinosa, E. P., Allam, B. 2023. Increased Food Resources Help Eastern Oyster Mitigate the Negative Impacts of Coastal Acidification. Animals, 13(7): 1161. https://doi.org/10.3390/ani13071161
Stevens, A. M. and Gobler, C. J. 2018. Interactive effects of acidification, hypoxia, and thermal stress on growth, respiration, and survival of four North Atlantic bivalves. Mar. Ecol. Prog. Ser., 604: 143-161. https://doi.org/10.3354/meps12725
Stiasny, M. H., Mittermayer, F. H., Sswat, M., Voss, R., Jutfelt, F., et al. 2016. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population. PLoS ONE, 11(8): e0155448. doi: 10.1371/journal.pone.0155448
Talmage, S. C. and Gobler, C. J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnol. Oceanogr., 54(6): 2072-2080.
Talmage, S. C. and Gobler, C. J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Nat. Acad. Sci., 107(40): 17246-17251.
Talmage, S. C. and Gobler, C. J. 2011. Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves. PLoS ONE, 6(10): e26941. https://doi.org/10.1371/journal.pone.0026941
Tomasetti, S. J., Morrell, B. K., Merlo, L. R., and Gobler, C. J. 2018. Individual and combined effects of low dissolved oxygen and low pH on survival of early stage larval blue crabs, Callinectes sapidus. PLoS ONE, 13(12): e0208629. https://doi.org/10.1371/journal.pone.0208629
Waldbusser, G. G., Bergschneider, H., and Green, M. A. 2010. Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Mar. Ecol. Prog. Ser., 417: 171-182. https://doi.org/10.3354/meps08809
Waldbusser, G. G., Voigt, E. P., Bergschneider, H., Green, M. A., Newell, R. I. E. 2011. Biocalcification in the Eastern Oyster (Crassostrea virginica) in Relation to Long-term Trends in Chesapeake Bay pH. Estuaries and Coasts, 34: 221-231.
White, M. M., McCorkle, D. C., Mullineaux, L. S., and Cohen, A. L. 2013. Early Exposure of Bay Scallops (Argopecten irradians) to High CO2 Causes a Decrease in Larval Shell Growth. PLoS ONE, 8(4): e61065. https://doi.org/10.1371/journal.pone.0061065
Young, C. S. and Gobler, C. J. 2018. The ability of macroalgae to mitigate the negative effects of ocean acidification on four species of North Atlantic bivalve. Biogeosci., 15: 6167-6183.
Zakroff, C. J. and Mooney, T. A. 2020. Antagonistic Interactions and Clutch-Dependent Sensitivity Induce Variable Responses to Ocean Acidification and Warming in Squid (Doryteuthis pealeii) Embryos and Paralarvae. Front. Physiol., 11: 501. doi: 10.3389/fphys.2020.00501
Zakroff, C., Mooney, T. A., and Berumen, M. L. 2019. Dose-dependence and small-scale variability in responses to ocean acidification during squid, Doryteuthis pealeii, development. Mar. Biol., 166: 62. https://doi.org/10.1007/s00227-019-3510-8
Zavell, M. D. and Baumann, H. 2024. Resiliency of black sea bass, Centropristis striata, early life stages to future high CO2 conditions. Environ. Biol. Fish., 107: 677-691. https://doi.org/10.1007/s10641-024-01561-y
If you are interested in learning more about MACAN and the work we do, please sign up for our monthly newsletter. You can also read our 2024 to 2028 Work Plan.

The Mid-Atlantic Coastal Acidification Network. All Rights Reserved.